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UNSWIMTRICAL BUCKLING OF THIN SHALLOW SPHERICAL SHELLS

by

Nai-Chien Huang

INTRODUCTION

This paper is concerned with the theoretical study of buckling of clamped

shallow spherical shells under uniform external pressure (Figure 1). For

sufficiently large deflection, deformations of such shells are not proportional

to the applied pressure. The shell deforms axisymetrically under sufficiently

low pressure and if we assume that the deflection remains axisymetrical, the

pressure-deflection relation may be represented by a curve such as OLD in

Figure 2. At the maxiuum pressure qcr I the shell tends to jmp from A to

B . So qcr is the buckling pressure for axisymemtrical snapping. The problem

of axisymmetrical snapping has been solved by different numerical methods in

References (1-4) and the results agree with each other and are represented by

the curve in Figure 3. As shown in Figure 3, the buckling pressures obtained

in such a manner are too high as compared with experimental results obtained in

References (5-6). Initial imperfections of the shell and unsymmetrical buckling

are presumed to be the sources of this discrepancy between axisymmetrical buckling

theory and experiment. Unsymmetrical deformation could conceivably start to

develop at point C in Figure 2. After unsymmetrical deformation has been

superimposed, the pressure-deflection curve might be represented by a branch

CD or CE at C as shown. The pressure at C is defined as the critical

This work was sponsored by the Office of Naval Research under Contract
Nonr 1866(02).
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pressure for unsymmetrical buckling. Grigolyuk(7) applied 'the Galerkin method

to solve the problem of unsymmetrical buckling, but no numerical results were

given in his work. Gjelsvik and Bodner (8) and Parmerter and Fung(9) worked on

this problem by the energy method and numerical calculations were carried out

only for a particular unsymmetrical buckling mode. Weinitschke(10) used a power

series method to solve this problem and obtained extensive numerical results,

but, as will be shown, the buckling pressures obtained in his work are in serious

disagreement with the results of this paper.

BASIC EQUATIONS OF SHALLOW SPHERICAL SHELLS

A shell is called "thin" if the ratio of its thickness to the radius of

curvature of its middle surface is much less than unity; and a spherical shell

is called "shallow" if the ratio of its rise at the center to the base diameter

is less than, say, 1/8 . The middle surface of a shallow spherical shell can

be represented by the paraboloid

z - H[1- 1r)21 1

where H is the rise of the middle surface at the center and a is the base

radius, as shown in Figure 1. The radius of curvature of the shell is

2R 2 (2)

2H

The stress resultants and bending moments per unit length of the shell are

shown in Figure 4, where N , N and N are membrane forces respectively;
r 9 re

--------------------- --------------------- --------- Mn-----------

Numbers in the raised parenthesis refer to the references at the end of
this report.
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Qrand Q0are transverse shears and M r $ and M eare meridional,

circumferential and twisting moments respectively. Let U , V and W be the

horizontal radial,. horizontal tangential and vertical components of displace-

ment respectively (Fig. 4) and let q be the external pressure which can be

considered to be vertical.

In the following equations, we use the notations

( )' ~-( )and () )

Equilibrium of moments requires

(rMr), +1 k 1 r@ -MrQ -O0 (3)

(rM 9)' + k + M -QrQ (4)

Equilibrium of stress resultants requires

(rN r) +N. -1 -Oa (5)

(rN r8), +i + N -O0 (6)

[rN r(W-z)' + N r@L-)+ r '' (W-;) N re(W-Z)' + + rq -0 (7)

Note that nonlinearity has been introduced in Sq. (7) by considering the

influence of W

The stress strain relations are

C =-j(N - A ) (8)

C .- L( (9)

2(1+v) N (10)

Mr -DKr +v
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M0 - D(xK+v Xr (12)

MrO - (1-v)D xr@ (13)

where I and v are the elastic modulus and Poisson's ratio respectively; t

It3

stands for the thickness of the shell and D -
12(1-v 2)

The strain displacement relations are also nonlinear

Cr = U' z'W' + (W')2  (14)

r2

1 1 (6
r$ r r r r r

x r -k" (17)r

S 2 w. (18)re =  2 r
r

1.
S ( l) 

(19)

Equations (5) and (6) can be satisfied by setting

N -1FV + -L (20)r r 2
r

Ne M F" (21)

N 1-(-F) (22)

rO -r

where F is a stress function.

Eliminating the transverse shears Qr and Q from Eqs. (3), (4) and (7),

we have

[(rM)' + M ]'+ (rM+)' + e + Mr] + rNr(W-z)" + N [-(W-") + (W-0)'
r re a r re rO r -r("-- N)E-+ qr)"+ (3)

2N re (W Z), r (W-z)] J+ q r a (23)
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Then the equation of equilibrium obtained by direct substitution is
1 * 1 ,. . 1 .(±-..

DV2V2w F ( + )(-) 1 + F" (-) + F
r r

+ 2 r r z +  V) + q (24)r r r

where r( ) u ( )" 2r
r

Using Eqs. (8)-(10) and (20)-(22), we can show that

-1 € -2 1 . (N - V4F (25)
r r r r

Substituting Eqs. (14)-(16) into the left hand side, we get another

fundamental equation involving F and a)

r r r r

1 *2 W1+ we - W) W + ) (26)

r r

which is the compatibility equation of shallow spherical shells.

Substituting Eq. (1) into Iqs. (24) and (26), we get Marguere's nonlinear

differential equations(ll) in polar coordinates for shallow spherical shells

under uniform pressure,

DV4 _Ifr ... L, +*, 11
R r if + 1b ,+2 )FO-2r 2 )(W1 2W

r r r r
(27)

V4 F It_ _I 2W + 1~~ 4~)2  1 r 1 (28)
r r

Let us introduce the following nondimensional quantities:

X - 223(1-v 2  1/4(sit) 12

x- r
a
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2H

X4

41H t

p M SL-
qo

32EKH3 t
where q0 

=  2 4 is the classical buckling pressure of a complete spherical

X a

shell of the eame radius of curvature and thickness. Then the nondimensional

forms of Eqs. (27) and (28) are

x 2 x 2 x 2 )x 2
x x x x

(20)
Vy Vw+ 1 1 . 1 1v'0,.. 2 w . )2 W' + 2 w)w, "0

x x

here2 2 1 2... FX .- r-2 +od -x + -2. -2)( .
£~-ax ) and

The edge of the shell is completely clamped; therefore, on the boundary

r - a , we have

w- (31)

W - 0 (32)

U -0 (33)

V -0 (34)

From the last two boundary conditions, we can show by the strain displace-

ment relations that

C 0 (35)

C -~ ¢ r -a@ 0(36)

on the boundary r = a
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Expressed in terms of the stress function, these equations become

F" - Y F' - F 0 (37)
a 2a

a (F' ' --X F F)IL - F' -LF+ vF" + 2(l+v)e ' F) -0(38)
r 2 £ 2r a

on r - a .

The nondiensional forms of Eqs. (31), (32), (33) and (34) are

w - 0 (39)

we a 0 (40)

Y1 Y K.- 0 (41)
-2

- -' --.. )' - .1 y' --'L- + vY" + 2(l -v)(x Y)' - 0 (42)
x x 2 X 2 xx x x"

on x - X

In addition, at the center of the shell, w and Y must fulfil the require-

ment of finite resses.

GOVERNING EQUATIONS FOR BUCKLING OF CLAMPED SHALLOW SPHERICAL SHELLS

As mentioned before, the shell necessarily deforms axisymmetrically only

under sufficiently low pressure. The pressure might reach a critical limit

(point C in Fig. 2) such that the shell bifurcates from an axisymmetrical

deformation path to one of unsymmetrical deformation.

Just after bifurcation, the functions w and Y can be written as

w - w*(x) + W(xS) (43)

Y - **(x) + *(x,8) (44)

where a*(x) and **(x) are the nondimensiontl vertical deflection and the
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nondimensional stress function just before buckling and hence are axisyuetrical;

o(x,e) and i/(x,e) are due to unsymmetrical buckling and these are considered

to be infinitesimally small at the beginning of unsymmetrical buckling. From

Eqs. (29) and (30), we have

4 7** + * + !**,, + 4p (45)
x x

V4**. - 1 k, (46)
x

Put -* -a ' and 9* - t*' , Eqs. (45) and (46) can be written, after

one integration, as

(x*') _* + xf* * -2px2 + 0*4* (47)x

(xt*)' - - xe* -1 e2 (48)

x 2

Also, the boundary conditions can be reduced to

@*(X) W 0 (49)

Xf*'(X) - vt*(X) - 0 (50)

Theme are the governing equations of the symmetrical problem which has been

solved numerically in References 1-4.

Substituting Eqs. (43) and (44) into Eqs. (29) and (30) and using Eqs. (45)

and (46), we obtain

74w' 92 ( 1 * + )*s + "* -I alpe* + W + U)(

( + 2 +x x x 2 (51)
x x

+ (- + (.1 a), + + + * (52)
x

where only the linear terms in % and * have been retained. These are two

linear differential equations for the functions w and 4 . Hence our problem

has been reduced to an eigenvalue problem where the eigenvalue p is implicit

and involved in the solution 0* and * of the nonlinear problem as defined
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by Eqs. (47)-(50).

Let

W(x,O) - On(x)Cos no (53)
n,,

*CxO) " W n(X)cos no (54)

n-0

d2 + d 2  L2 ( L L )

n (x-2 xdx '  2' nnl

Substituting Eqs. (53) and (54) into (51) and (52), we have, for each n

Lw - L e* +-* * + * CU*' pn~ (55) (
Snn*n " n "+ + (nxx n " 2  n))*' (55)

x x

2 1 2

L 2 -nLw +(- +nx (56)
nn "n n x n 2 n x nx

The boundary conditions can be derived from Eqs. (39)-(42). These are

W (X) - 0 (57)

w(X) - 0 (58)

2
-V*'(X) +aV*() 0(9

n 2

X*1'(X) - " [1 - v + (2+v)n n2 *(X) + n() 3 2 W 0 (60)

Equations (55)-(60) are the governing differential equations and the

boundary conditions of the problem of unsymetrical buckling of clamped shallow

spherical shells. Existence of a solution for any integer n at a pressure less

than the critical pressure of axisymetrical snapping implies existence of a

critical pressure for unsymmetrical buckling.
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SOME PRELIMINARY STUDIES

Modified Problems

Before the main problem was treated, it was considered advisable to study

some problems of unsymmetrical buckling of shells with modified boundary

conditions for which the solutions can be obtained analytically. The purpose of

this study is to find whether unsymmetrical buckling rather than axisymmetrical

snapping would control in these modified problems. The answers for the critical

pressure for unsymmetrical buckling obtained here can be also used to check the

accuracy of the numerical procedures for the main problem.

In the first modified problem the edge of the shell is supported by rollers

which can slide along a conical wall without changing the slope along the edge

of the shell as shown in Figure 5. In the second modified problem the edge

condition is the same as that in the first modified problem except that the edge

is imagined to be suddenly clamped just before buckling occurs. In both modified

problems the shell contracts uniformly before buckling and therefore, 0* - 0

and -*-2px .

The critical pressures for these modified problems are calculated for

n -0 1,.2 and 3 in Appendix A and are plotted against X inFigures 5 and 6,

where n is the number of waves along the circumferential direction in the

buckling mode. In both modified problems it is found that unsymmetrical buckling

(nOO) dominates for some values of X . These calculated critical pressures

are higher than the classical buckling pressure of a complete spherical shell.

In the first modified problem the calculated critical pressures meet the

classical buckling pressure periodically at certain values of X and in the

second modified problem the calculated critical pressure approaches the classical
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buckling pressure asymptotically when X approach infinity. In both problems

the results are not realistic because of initial imperfections..

Approximation by Variational Principle

A variational'principle is developed in Appendix B for a preliminary study

of the critical pressure of unsymmetrical buckling of clamped shallow spherical

shells. The boundary conditions (57) and (58) of the main problem were specified

in the application of this principle. The differential equations (55) and (56)

are the Euler's equations and the boundary conditions (59) and (60) are the

natural boundary conditions of this variational principle. A Riyleigh-Ritz

method is used in conjunction with the variational principle in Appendix B and

numerical results have been obtained for . - 6 as shown in Table 1. These

critical pressures'for unsymmetrical buckling are lower than the critical pressure

for axisytmetrical snapping, and this certainly tends t o confirm the suspicion

that unsymmetrical buckling does occur for clamped shallow spherical shells.

However, the numerical results obtained by this variational principle are not

necessarily either upper bounds or. lower bounds to the exact critical pressure

for unsymmetrical buckling..

NUERICAL SOLUTION

Difference Equations

The most popular practical method to solve differential equations is to

reduce them to difference equations by confining the range of the independent

variables to a network of mesh points. In this problem we define

x a jh - , 1, ...,N - X/h

where h is the mesh size.
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Let a)j -n(Jh) ; 4n(jh) ; - *(Jh) and § "*(Jh) Using

u = (61)

vj = " (62)

The differential equations (55) and (56) at j - 1, 2, ... N can be written as

+ 1+2n2 j1+2n2 4n2_n 4  2 1 2

Ul o +(66),V+ -

j x x 2 x2

2
1 1 C C n2+ vu - .-v -* + (-+w' n2 ] )* 1 l, 2,. N (63)

x x i x i x- 2j j

2i 1+2n 2 v+1+2t12 4n2 -n4 1j. u 2 2
IU" + n-- Cu+ , I-(

j x x 2 j 3 j

11

+ (* j1, 2, N (64)

The boundary conditions (57)-(60) can be written as

0~- (65)

0 (66)

2
vN + n~ *N -0 (67)

-VN ri - v + (2+v)n] 3n 0 (68)N X ~ ~ n *Nr

We shall use the following finite difference approximations for the first and

second derivatives:

ft..L(. + f )(69)
j 2h iI J+1

f (f ~ -2f + f ~+~(70),

The error of these approximations are 0(h2) Equations (6l)-(64) can be
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written as

AjYj+i + BJY + C -yj.1 m 0 J I, 2, ... N (71)

where one fictitious station j m N+I has been added off the edge of the shell

for convenience. Equations (65)-(68) can be written as

GyN+1 + KYN - GyN_1 - 0 (72)

where

4rj]

Y j u (73)

V

j

-1 0 0 0

0 -1 0 0

A- +2n2  h2  h2  ) h 0 (74)2j3 2j' "2j"(') hl .

1 ) h+n 019'
h 2 1+2n 2 0 2(l 1

-j '2j3.

2 0 h2  0

0 2 0 h2

B 2 4nn 4 hn1+2n 1 3 1 (75)j + (1-e*') -h (2 1+2n+ - 9* -h (h- O'
4 j2  1 2  j - 2  ir

h ;4n 2 _n4  3 122
h~nh- h * '-h2 + 1+2n2

-1 0 0 0

0 -1 0 0

C 1+2n2 -h2  h2  2 1 (76)

2j3 +2j j 2j 1 h

- (1*) -12 0 h2 (1- 7)
2j 2j3
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0 0 0 0

1 0 0 0
G -0 " 0h0 (77)

0 " h- 1-v + (2 v)n2 ]  0

and

1 0 0. 0

0 0 0 0

K- 0 n2 0 (78)

0 Y 0 0

From the conditions that all components of stress resultant and moment are.

nbounded at the center of shell, it can be shown that, near x m 0 w x and
n

4 n Therefore.CIy0 - 0 , and the first equation of (71)'will simply ben Y

A 1 y2 + B1yI 1 0 (79)

Determination of Buckling Pressure

Let

yj QJYJ 1  (80)

then

Yj-1 Qj-lYJ (81)

Substituting Eq. (81) into Eq. (71), we get

Yj a-(B-CjQj.1)'A yj+I

or

Qj M - _(Bj+C jQj. ) " 1 (82)
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From Eq. (79)

Ql -B 1A 1  (83)

which also can be obtained from Eq. (82) by setting

Qo - 0 (84)

Equation (82) is a recurrence formula by which all Q' can be evaluated.

Substituting Eq. (80) into Eq. (72), we get

Sy+l =o (85)

where

S - G(I-QN1) + (86)

and I is a 4x4 unit matrix. For a nontrivial solution YN+lI 0

Isl - o (87)

which is the characteristic equation for determination of critical pressures of

unsymmetrical buckling.

The case n - 1 is a special case where Eqs. (55)-(60) can be satisfied for

all p by an exact solution cn1 M 0 and *1 - x . Since the difference

equations are exact for linear functions Eqs. (71) and (72) can be satisfied by

0

Equation (85) can be written as

0

1

[S] -0
0

0
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for n 1 1 and so all elements in the second column of matrix S vanish. For

n - 1 , Eq. (56) is reduced to

d [x 2 ,,, - 3*, + .2 + x2 W1 - xW - (xW'-W)93 - 0x x

Integrating from x - 0 to x - X and using Eqs. (57) and (58), we can obtain

Eq. (60). Thus, for n.- 1 , Eq. (60) is dependent and can be omitted. We have

where S is the resulting matrix obtained by striking out the second column and

the fourth row of the matrix S . For a nontrivial solution,

- 0 (88)

which is the characteristic equation for determination of critical pressures for

unsymmetrical buckling for n - 1

Numerical Procedure and Results

The numerical procedure of this problem consists of two parts. The first

part is to calculate 8* , 9* and their derivatives for the axisymmetrical

deformation before unsymmetrical buckling. We used the iterative method given

in Reference (1)*. The Poisson's ratio v was taken equal to 1/3 in all

calculations and the interval 4x used was 0.25. The first derivatives of 9*

and * were calculated by Eq. (69). The values of Kelvin functions and their

first derivatives used were found in Reference (12).

In the second part of the calculation, the elements of matrices A B j,

The criterion of convergence of the iterative procedure used in this
computation is that the final answer for average deflection agrees to four
significaht figures with the mean of the results of the five previous
iterations,
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C_ ) G and K were calculated first for different values of n and Qj, S

and IsI could be obtained. In general, Isi does not vanish if the trial value

of p is not the buckling pressure pr The values of ISI were plotted

against p . The critical pressure is the lowest root of ISI - 0 . When n - 1

must be calculated instead of S . This procedure continued for different

values of n until axisymmetrical snapping occurred before unsymmetrical buckling

appeared.

Two mesh sizes, h - 0.25 and h - 0.125 , were used in the calculation for

X - 6 . Since the mesh size 0.25 was used in the first part of the calculation,

in the computation for h - 0.125, the values of 8* , * and their first

derivatives at the intermediate stations were obtained by linear interpolation.

The difference of buckling pressures calculated by these two mesh sizes was about

0.1 c . Hence we use h - 0.25 in our calculation

The validity of this numerical procedure was checked by comparing solutions

of the second modified problem in Appendix A (Fig. 6) with solutions obtained by

this numerical method. Computations were carried out for the cases X - 6 and

X - 10 and the maximum error in pcr was 0.4 %

All numerical calculations were made on the IBM 7090 digital computer and

the programaing was written in the FORTRAN language. The critical pressures for

different values of X and n are given in Table 2 and also plotted in Figure 8.

The lowest value of these critical pressures at a given ' is the governing

pressure for unsymmetrical buckling. These governing pressures are shown by a

heavy line in Figure'7.. Buckling modes were evaluated for these governing

*" !

This choice of mesh size provides a reasonable number of stations within
the boundary layer of the buckling mode.
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pressures and are shown in Figure 8.

According to the results of the calculation,unsymmetrical buckling (n 0)

does not occur for X 5 5.5 . Unsymmetrical buckling starts to appear when X

is slightly greater than 5.5. As X keeps increasing the buckling mode shows

more and more waves along the circumferential direction and also shows a distinct

boundary layer near the edge of the shell along the radial direction when X is

high. An asymptotic analysis has been done in Appendix C where an asymptotic

value of the critical pressure for unsymmetrical buckling is found to be 0.864

when X approaches infinity, and the ratio n/X is found to approach 0.817.

DISCUSSION

The shell may snap-through under the critical pressure for unsymmetrical

buckling if the tangent of the branch on the pressure deflection curve has a

negative slope at that critical pressure (as shown by the branch CD in Fig. 2).

On the other hand, if that branch has a positive slope (as CE), deformation of

the shell changes from the axisymmetrical type to the unsymmetrical type suddenly

under the critical pressure but no snapping appears. The determination of the

branch of pressure-deflection curve involves the analysis of the post-buckling

behavior of the shell.

In Figure 9 the results of previous attempts to calculate critical pressures

for buckling of shells are plotted for the purpose of comparison with the present
results. Gjelsvik and Bodner (8) and Parmerter and Fung(9) calculated the

critical pressures based on an approximate solution for the cases n - 0 and

n - 1 . The junctions of curves for n - 0 and curves for n - 1 in Figure 9

are represented by tick marks. Weinitschke(10 ) obtained critical pressures for
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an extensive range of X and n by a method which was claimed to be accurate,

but the buckling pressures obtained in his work are in serious disagreement with

the present results. It is noted that, for n - 1 the present result is much

closer to the results of References (8) and (9) than Weinitschke's result . In

References (7), (8) and (9) the curves representing critical pressures for n - 0

are shown to be tangent to those for n - 1 at their junctions. However, this

tangency does not appear in the curve of present work. The present theoretical

buckling pressures are still higher than the experimental results. The effects

of initial unsymetrical geometrical imperfections and variation of shell thickness

are presumed to be the source of this discrepancy, but the analysis of such

problem is very complicated.

More recently, in a private communication, G. A. Thurston stated that he
found a lower bound to the critical pressure p - Q.753 for n - 4

cr
and X -8 ,which is close to the present result p cr 0.766 (Table 2).
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APPENDIX A

Analysis of Shells with Modified Boundary Conditions

As mentioned before, in both modified problems

e* 0 (Al)

1* - -2px (A2)

Substituting them into Eqs. (55) and (56) one obtains

L 2w - L n - 2pLnw (A3)
n n n n n n

L " -Lnw (A4)n n n n

The general solutions are expressed in terms of Bessel's functions

w - AnJn(p) + B j(A) + Cnxn + EnYn(x) + FnYn(A) + Gnx'n (A5)
n n n n n n n n nn P n

A EAaj2 X n 2 x -n
n" ) + B P (J + Dnx + -9 Y F( x ) + F Y() + Hnx (A6)n 2 n n n ni n 2 n n nj. n

where

1 (2+1L) (A7)

All components of stress resultant and moment are bounded at the center of the

shell, therefore,

w - AxJ(gx) + BnJn( ) + Cnxn (A8)
n n n n n 4 n

A2
A 2JG)+ A)+Dx (A9)

n 2 n n

The boundary conditions of the first modified problem are conveniently

obtained from the principle of virtual work

2A a

ff(M r 6K re+M 8Ker 8 r+Nr 8 r+Ne6 PC+Nr86Yr -q8W)r drde - 0 (AlO)

00
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Using the strain displacement relations we get

2x fa : <%>-r.> 4 "e><:",r6
-(rM )"+( )-M+ - (rM '(rN z')-- )-(N '(N z')qrJw

fj r Br ri) r r rO rO
0 0

+ C(rN r) '+N rG-N ]6U + [(rN r)'4 +N r6V) r drdO

2:K•

+ f ((rr),+2 r.M 16 + ((rM )'+2k .+2W)+aN ]6g . 6W.

0

+ aNrO V- rad -0 (All)

where C and C are the displacements along the wall and perpendicular to the

wall respectively, therefore,

2H (A12)
a

U + 2H W (A13)
a

By substitution, we get the boundary conditions

(rMr)' + 2M - M - 0 (A14)

W' - 0 (A15)

g - 0(AW6

N -r "o (A17)

In terms of the nondimensional quantities, these are

c- 0 (A18)n

2
w(L )' + (1-v) n - o (A19)

' - " o(A20)
-*n +n - 0

2
L X(L* +'4 (l+v)(n -l)* +c -) 0 (A21)n n n n n n
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Substituting Eq#. (A8) and (A9) into Eqs. (Al8)-(A21) and eliminating the

coefficient of D , we have the following characteristic equation from the

n

resulting equations

n ~n

3
3 ~~ 3n22

-L X (A) + G- ~ J J'() +- n ) n - ~ 1 A2

~AnJ k 2. 2n Jn± (-) 2 n+l 2

The case n - 1 is also a special case in the modified problems. However,

Eq. (A22) still holds for n 1 1

The buckling pressures are plotted against X for different values of n

in Figure 5. The case n - 0 represents an axisymmetrical buckling.

The boundary conditions of the second modified problem are the same as those

of the main problem. Substituting Eqs. (A8) and (A9) into Eqs. (57)-(60) and

eliminating the coefficient of D , we get the following characteristic equation
n

n()() 1

jI(( 0 (A23)

n~J(X n(l+n) Y~ 2 x1
' 2 2 2nIX l IA). nlnhL2 2 J X n 2X2  n l+v

This equation holds for the special case n - 1 but is not applicable for n - 0

where we can show by using Eqs. (55) and (56) that Eqs. (57)-(60) are linearly

dependent. Omitting the last boundary condition equation (60), we can get the

characteristic equation for n - 0 , which is

0'~ ()J;(Px) - 2L J0(gx)j.() + dl+v)(P 2  T 0(o2

The pcr - X curves for the second modified problem are shown in Figure 6.



-23-

APPENDIX B

Variational Principle for Buckling of Clamped Shallow Spherical Shells

A variational principle for the problem of clamped shallow spherical shells

was first considered by Weinitschke(13 ) for the problem of axisymetrical

deformation of shells. From a modified Reissner variational principle (14 ), we

can show that Eqs. (45), (46), (49) and (50) are equivalent to the following

variational principle:

f f' **,,xo,+ 1(,') 2 3+ I(V?2cL*) 2  1( ,-*)2.4pu$. xdx+ (I+v)86[*',(),)] 2  0

0 (l)

where c*(X) - a*'(X) = 0 is specified. Furthermore, Eqs. (55)-(60) are

equivalent to the following variational principle:

(a). n 2 n xw 2 2 n - 2f 1 Wn nl C in . ( 2 2 " n> +X An *n) ,n4( n)  ......n._
f0F x x
0

2
1 -. 22 2, 2wn)- (L) xdx+ y(n+v)[(*) -n -"''xk _ 0 (B2)

where an(X) c'(X) - 0 is specified and variations are taken with respect to

(U and wn

In order to apply these variational principles we try

- (x2_ k2 )(Ax 2+Bk 2 )/k4  (B3)

*- Cx4 + Dk2x 2  (B4)

w n Exn (x 2 k2 ) 2  (B5)n

*n = xn(Fx4+Gx+H4) (B6)

Substituting these expressions into Eq. (BI) and taking variations with
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respect to A , B , C and D , we obtain four nonlinear equations for the

unknowns A , B , C and D ; their values can be calculated numerically for

any assigned p . Substituting Eqs. (B3)-(B6) into Eq. (B2) and taking

variations with respect to I , F , G and H , we obtain four homogeneous

linear equations and hence the characteristic equation from which the buckling

pressure can be determined for any n . The numerical calculation has been done

for ? - 6 and the buckling pressures are shown in Table 1.
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APPENDIX C

Asymptotic Solution for Buckling Pressure for

Shallow Spherical Shells with Large X

It is interesting to consider the asymptotic behavior of clamped shallow

spherical shells when X approaches infinity. A boundary layer is found near

the edge of the shell when the shell deforms axisymetrically before buckling.

In the region outside the boundary layer the shell deforms essentially by a rigid

body downward displacement, hence all components of stress resultant and moment,

except N , vanish.

Let

* = ** + 2px (Cl)

Equations (47)-(50) can be written as

e*"+ * - j + - -2p* +1-  (C2)x X2 x
x

"+ 1. - 9*- L * (3
x 2 "2x 0 2 (3

0,()j-o (C4)

/, i'(X) - I(,) - 2(1-v)p (c)

In the region of boundary layer where x approaches infinity, the following

equations can be used:

0*" + I -2pl* (06)

I" M -0 (C7)

e*(,) 0 (C8)

i'( 2(1-v)p (C9)

JY
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When p < 1 this problem can be solved analytically. The final results are

. 2 %1j (l-v a sin ( -x) (CO)

4- 6 lv . [4l-p& cos (Xx i 4j ?-)
' 2 -4 2

or

4* -2px (Cl)

From Figure 8 it can be seen that a boundary layer also appears in the

buckling mode of unsysmetrical buckling. Let 8 be an effective boundary
b

layer thickness and

x + 6 - (C12)

S d

then, in the region of: boundary layer, Eqs. (55)-(60) become
& oil, 2 0 d'" + 2 _ */,, + f l- * ) + 2p c)" 2po" w 0 (Cl3)

2

- 2c r" + + CO . a(l-e-') 0 (C14)

()(8b) 0 (C15)

U'(8 b) - 0 (C16)

.r( 8 b) + V a (6b) - 0 (C17)

8"' (b)- (2+v)e ' (b) b 0 (C18)

where

li. (2 (C19)
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and

s (6-i) - cos p1+ (6-i)] (C20)O*'= p~lv~ [1+p in 2, 1 2

Also

C(0) . c,(0) (0) (0) - 0 (C21)

By the same method as given in the main problem the asymptotic value of

the critical pressures can be evaluated numerically. In the calculation, 6
b

was chosen equal to 40. The critical pressures pcr are plotted against a

in Figure 10. The minimum of this curve determines the required asymptotic value

of the critical pressure for X equal to infinity which is found to be

Pcr" 0.864 when the ratio n/X approaches 0.817. The buckling mode is also

calculated and is shown in Figure 11 from which the actual boundary layer

thickness is found to be 12 approximately.
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n Pcr. calculated by variational principle

1 > 0.85

2 0.770

3 0.751

4 0.850

Buckling Pressures Calculated by Variational Principle for X. 6

Table 1



n

3.5 4 5 5.5 6 7 8 9 10 11 12 13 14 15 16 17 18

0.762 0.931 0.822 0.83 0.96 0.96 0.98 0.98 0.92 0.90 0.94
0 I I I I I I I

0.614 0.579 0.629 0.763 0.995 1.068 1.130 0.94 0.83 0.84 0.97 0.97 0.99 0.99 0.93 0.91 0.9

1 0.919 1.023

2 0.775 0.796 0.893

3 0.827 0.760 0.774 0.846

4 0.931 0.812 0.766 0.777 0.814 0.899

5 0.902 0.813 0.777 0.776 0.800 0.841 0.872 0.900 0.929

6 1.000 0.887 0.816 0.780 0.776 0.798 0.826 0.850 0.074 0.905

7 0.973 0.877 0.812 0.782 0.780 0.794 0.814 0.835 0.859 0.879 0.906

8 1.057 0.810 0.790 0.781 0.790 0.807 0.828 0.847 0.861

9 0.815 0.792 0.782 0.790 0.803 0.818 0.839

10 0.853 0.816 0.801 0.785 0.792 0.800 0.818

11 0.896 0.949 0.815 0.797 0.790 0.792 0.802

12 0.942 0,892 0,843 0.814 0.800 0.792 0.793

13 0.928 0.876 0.843 0.818 0.800 0.794

14 0.918 0.873 0.842 0.814 0.803

15 0.951 0.911 0.872 0.837 0.818

16 0.945 0.901 0.864 0.835

17 0.976 0.892 0.860

18 0.888

19 0.911

CALCULATED ItCKLING PRESUR8 OF0 CLASD S8ALIL. SPEI28CAL SHMS

TABLE 2
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